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Inthis report, the relativistic time transformation is reformulated to allow simpler
time calculations relating analysis in a solar system frame (using coordinate time)
with Earth-fixed observations (using atomic time). After an interpretation of terms,
this simplified formulation is used to explain the conventions required in the
synchronization of a world-wide clock network. In addition, two synchronization
techniques—portable clocks and radio interferometry—are discussed in terms of

the relativistic time transformation.

l. Introduction

In the relativistic analysis of the very long baseline
interferometry (VLBI) and spacecraft radio metric data,
primary calculations are often most conveniently made
in a frame at rest with the solar system barycenter. How-
ever, observations in these applications are often made
relative to an Earth-fixed frame. Consequently, such
analyses usually involve a relativistic time transformation
(Refs. 1, 2) between the solar system frame (using co-
ordinate time) and Earth-fixed observers (using atomic
time). In this report, the time transformation, including
both speed and potential terms, is reformulated in order
to facilitate both interpretation and analysis in these
applications. After an interpretation of the terms in the
reformulation, the transformation is used to consider
the synchronization conventions associated with a world-
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wide clock network. Since clock stabilities are beginning
to routinely enter a relativisticly significant range (10~
to 10-*), a discussion of such conventions is presently
more than an academic exercise. Finally, two synchron-
ization techniques, portable clocks and VLBI, are an-
alyzed in terms of the simplified time transformation.

Il. Time Transformation Reformulation

In many VLBI and spacecraft applications, relativistic
effects are most conveniently handled by performing
primary calculations in a frame at rest with respect to
the solar system barycenter and then making a rela-
tivistic transformation to Earth-fixed antenna observers.
Consequently, these calculations usually involve a rela-
tivistic time transformation from the solar system frame
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to Earth-fixed observers. In this section, the time trans-
formation is manipulated in a simple manner to cast it
in a form that is more convenient for most applications.

In this analysis of the time transformation, approxi-
mations will be guided by the following considerations.
State-of-the-art oscillator technology (H-maser standards)
can, at best, provide clocks with a long-term stability
of the order of Af/f = 10-'*. Because of this instrumental
limitation on time measurement, theoretical rate correc-
tions (dr/dt) of the order of 10-% or less are presently not
experimentally significant. Consequently, terms that lead
to clock rate corrections of the order of 10 or less will
not be retained in the following analysis.

Suppose that observers in the solar system frame note
that a given event occurs at coordinate time t at a given
point j on the Earth’s surface. Earth-fixed observers at
this point will note that the same event occurs at proper
time ; according to their (atomic) clock. Figure 1 defines
the lTocation of point j as measured in the solar system
frame. Note that the position vector of point j(Y;) is rep-
resented as the sum of a vector to the Earth center of
mass (X,) and a vector (X;) from the Earth’s center of
mass to the given point, This separation of orbit and spin
geometry leads naturally to a simplified version of the
transformation from coordinate time ¢ to proper time 7,
as the following manipulations will show.

If one retains only the most significant terms in the
metrie tensor (i.c., the terms that lead to rate corrections
greater than 10-%), then the relativistic transformation
(Ref, 1) relating times in the two frames is given by

drj [1 B O‘{]_)._, (1)

26(Y;) ™
dt * }

c'..' C 2
where

Y_/' = V,, -+ V;

and ¢(Y;) is the Newtonian potential at point Y; in the
solar system frame. The order of magnitude of the various
terms in Eq. (1) is as follows:

V. .
—c—' =~ 10~  for Earth orbital speed

Vi

)
&

~ 10~  for Earth observer rotational speed with
respeet to Earth’s center of mass
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for gravitational potential at Earth’s orbit

Therefore, to order 10" in the rate expression, we
have

h

V§+V§+2VP°V,' ¢
=1- +Z
dt

2c¢* c?

1 (2)

The last equation must be integrated to give proper time
as a function of coordinate time, which yields

'r_,-(t> = r, + ‘rl +t—t.

/, [v;-: £ V42V, Y, — 2¢]dt
I

2c*

(3)

where the initial value for ;(t) has been separated into
two parts, 7. and 7. The term r. is common to all clocks
while the term 7} allows for possible adopted differences
in initial clock readings at t = ¢. These terms will be
discussed in Section I11.

Two terms, V,.*V; and ¢, will now be manipulated
into more useful forms. As shown below, these manipu-
lations lead to a time transformation for Earth-fixed
clocks that does not involve an integral over X;, the
clock’s motion relative to the Earth’s center of mass.

The potential term ¢ can be separated into a sum of
two potential terms:

&(Y5) = 6(X)) + $ul(X, 1 X;) (4)

where ¢, =~ 10" ¢* is the Earth potential, and ¢, is due
to all other bodies. The Earth potential is very nearly
constant for a given Earth-fixed point, while the poten-
tial ¢, varies as the clock moves about due to both Earth
spin and Earth orbital motion, In order to separate the
Earth spin and Earth orbital motion, expand ¢, as
follows:

bue(Xe + Xj) =~ ¢p(Xo) + Voru(Xe) X, (5)
It is readily shown that quadratic terms in this expansion
are of the order of 10'7. If one neglects relativistic

terms of the order 10, the gradient Y/ ¢, is the acceler-
ation of Earth’s center of mass so that

¢r(Xe + X)) = ¢u(Xe) —a,- X (6)
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The time transformation can be further modified by
integrating the V,+V; term by parts to obtain

/l V() ¢ Vj dt - V,:(t) ¢ X,(t) - V,(t,) . X]<t[) — / a,* Xj (lt

t
-

™)

Substituting Eqgs. (4), (6) and (7) in Eq. (3), we obtain
the expression

. tTrV: — 2¢.(X,
rj(t):t—-t(.“/ |: $i(X.)
re

V.(t.)  X,(t,.)

c* c*

4+ V3 — 26X,
V] be( )]dt
¢

i

trl b (8)

Note that the two acceleration integral terms produced
by the velocity and potential terms have canceled. Fur-
thermore, except for the V,.+X; terms, the orbital and
spin motions have been separated.

For a clock fixed with respect to Earth, the speed V;
and potential ¢.(X;) are constant to about one part in
10%. Therefore, to excellent approximation, we obtain for
an Earth-fixed clock

TVE— 29X, V(8 « Xt

)1 - [ Lm0 VX

',

2¢® c*

e (‘.X' ¢ ')"2(X
Yelt) ]<t>_|:V/ 25_’( ])j'(t - tr')+T§ 4o

9)

These expressions for proper time simplify the analysis
of clock synchronization which follows.

ill. Clock Synchronization Conventions

World-wide timekeeping is now accomplished by a
network of atomic clocks placed at various locations
over the Earth. In this network, member clocks are peri-
odically synchronized with a master clock, which is care-
tully maintained at a fixed location. (“Master clock” in
practice is the average time reading of a set of reference
atomic clocks. Specific techniques for synchronization
will be discussed in Section V on the basis of the rela-
tivistic transformation.) Present synchronization work,
based on the principles of classical physics, assumes that
clocks, once synchronized in time and rate, will continue
to indicate the same times, within instrumental accu-
racy, wherever they are moved on Earth’s surface. How-
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ever, relativistic analysis, such as Eq. (8), indicates that
classical assumptions may not be adequate if clock accu-
racies surpass the us level in time and the 10" level in
rate. That is, sufficiently accurate clocks can lose syn-
chronization due to relativistic effects if they are sep-
arated on the Earth’s surface. Consequently, an accurate
clock network based on relativity theory must take these
cffects into account,

An understanding of the synchronization problem is
facilitated by the relativistic formulation in Eq. (9) which
connects coordinate time with the proper time of a given
Earth-fixed clock. Even though this equation is not a
direct comparison of Earth-fixed clocks, it contains all
the information needed to study the synchronization
problem, provided the various terms are properly in-
terpreted. The following discussion attempts such an
interpretation with emphasis on the establishment of
synchronization conventions. Even though some aspects
of this discussion are relatively well-known, they have
been included, sometimes without reference, for the sake
of completencss.

First, we will divide the terms of the time transforma-
tion Eq. (9) into two categories, terms that are the same
for all clocks and terms that are different:

() =t —t, | At At + o1, (10)

where the common terms are given by

[V 204(X,)

and the clock-specific terms by

The common term At, contains the factors that cause
the same rate offset for all clocks: the speed of the Earth
center-of-mass and the “clock-invariant part” of the po-
tential which is located at the Earth center-of-mass.
Since this term is common to all clocks in the network, it
will not cause a loss of synchronization. That is, this term
is not significant in “Earth-bound” comparisons of clocks
but is significant in transformations from Earth-fixed
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clocks to coordinate time. In practice, the common term
must be modified to account for any conventions affect-
ing overall clock rates. For example, in principle, the
present system defines the second so that all clocks run
at the same average rate as coordinate time (Ref. 1).
This rate definition is represented formally in At;, by
subtracting the timc-average rate from the total rate in
Eq. (11) as follows.

EAVE — 2864(X,)

Aty=At, — A, = — [ ) o0 dt  (18)
where

AVE= Vi Vi

Adp = b — E

This rate adjustment, which is of the order of 10-%, leaves
only the periodic effects in At,. Even though these pe-
riodic effects do not cause loss of synchronization, they
must still be included in transformations between proper
time and coordinate time. For example, the predominant
effect, orbital eccentricity, has an integrated amplitude
of approximately 2 ms and an annual period.,

The clock-specific term At; can lead to synchronization
loss between Earth-fixed clocks. This term can be sub-
divided ‘into three categories of time dependence: con-
stant, linear, and periodic. The constant terms are defined
by the synchronization convention established below.

In the second category, the linear term, [v3/2 — ¢,]
(t —t.), is a rate correction based on clock geopotential
and speed relative to Earth’s center of mass. Note that
this term is essentially the effective potential at point
X; as seen in an Earth-fixed frame. That is, the gradient
of V3/2 — ¢. gives the sum of the “centrifugal force” and
gravitational force at that point. Since mean sea level
represents, to good approximation, a surface of constant
effective potential, clocks at sea level should run at es-
sentially the same rate without relativistic corrections.
However, for two arbitrary Earth-fixed clocks, the dif-
ferential rate correction is easily calculated on the basis
of differential altitude by the approximate formula gah,
which predicts that the rate correction changes by ap-
proximately 1.1 X 10-** per kilometer of altitude above
mean sea level. For airborne clocks, it is readily shown
that differential rate corrections of the order of 102
are possible. (In the airborne case, of course, V& — 2¢, is
not necessarily a constant at a given altitude since the
clock is no longer an Earth-fixed object).
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Finally, in the third category, the periodic term
V.(t)* X,(t) is never greater than 2 us and is essentially
diurnal since V, changes very little over one day. This
term is a relativistic consequence of the time transforma-
tion between frames and corresponds to the special rela-
tivity clock synchronization correction. That is, it accounts
for the relativistic principle that simultancous events in
one frame are not necessarily simultaneous in a frame
passing by with speed V.. Consequently, it is of signifi-
cance in transformations from Earth-fixed time to co-
ordinate time but is not present in “Earth-bound”
comparisons between Earth-bound clocks. This fact is
supported analytically by noting that the periodic term
“changes™ to match another clock if the two clocks are
brought together on Earth,

The following conventions regarding synchronization
are designed to accommodate these clock-specific terms.
Since the linear terms can lead to gross disagreements
between clocks over long time periods, they will be
removed, either explicitly or implicitly, by making ap-
propriate location-dependent definitions of clock rate. In
principle, these corrections could be applied by means
of explicit on-site rate adjustments based on a funda-
mental physical process. For example, at each location
a second could be established in terms of a particular
altitude-dependent number of cycles (Ref. 3) on a cesium
beam frequency standard where the cycle-count differ-
ential between altitudes would be based on the calcu-
lated differential in effective potential. Since these rate
adjustments are of the order of 10'%, the oscillators
would necessarily have to be capable of independent
(absolute) calibration at a few parts in 10-'*, Unfortu-
nately, routine calibrations at this level are not feasible at
present. In practice, this rate adjustment will be im-
plicitly applied in a differential sense whenever a world-
wide clock network is kept in time synchronization. For
example, as in the present system, a “master clock” would
be utilized, at a given location, to define the second and
maintain a reference time. Other clocks over the world
would then be forced into synchronization by means of
“Earth-bound” synchronization techniques (see Sec-
tion V). Since the synchronization process prevents clock
divergence, the appropriate differential rate correction
will automatically be implicitly applied without recourse
to relativistic calculations.

Since the periodic term V,(t) * X;(t) does not affect the
synchronization of Earth-bound clocks, it is not of con-
sequence in the establishment of a synchronization con-
vention.
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In order to complete the synchronization convention,
the constant term r/ must be defined. This term will be
defined by requiring that the clocks exhibit zero dis-
agreement on the average according to solar system
observers. This goal is accomplished by letting

= =Vt X () /e (14)

As we shall see in Section V, this definition is appropriate
for synchronizing clocks according to Earth-bound ob-
servers.

By applying the definitions and conventions described
above, one obtains a standardized time transformation
for clock j:

CAVE — 2864(X,
?}(t):tt,,ﬁ —Tf”i—ldt

»»»»» O R (15)

Note that the time transformation no longer involves an
integral over clock coordinates but only over coordinates
for the Earth’s center-of-mass. Therefore, relative to
the original transformation, time calculations are much
simpler.

In summary, with the conventions outlined above, the
network clocks would be given selected initial times (at
coordinate time t.) and the same average rate (i.e,
dr/dt = 1) according to solar system observers. With
these conventions, the clock network could be kept in
synchronization according to Earth-bound observers by
means of two synchronization methods now in use. These
two techniques, portable clocks and VLBI, will be dis-
cussed in Section V in terms of these synchronization
conventions.

IV. VLBI Time Delay

The VLBI time delay is readily calculated using Eq.
(15} as follows. Suppose that radio waves emitted by a
distant source are observed by two Earth-fixed antennas.
Let a given wavefront reach antenna 1 at time t and
antenna 2 at ¢ when observed in the solar system frame.
According to the two antenna teams, the wavefront ar-
rives at time 7i(t) at antenna 1 and time 75(#') at antenna
2. When the two antenna teams compare arrival times,
they will calculate the “geometric” delay:

7(t) = 7(t") — 7(t) (16)
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We have assumed that the antenna clocks have been
synchronized according to the conventions described
in Section 11

-Since | — t| is less than 30 ms for Earth-fixed base-
lines, the terms containing ¢ can be expanded about t to
yield

f

ro(t) = 7() — (1) + () (¢ — 1) (17)

2¢° c?

V() . B(t) (18)

o

where the baseline B equals X. — X,. In this expression,
we have neglected a a, * x term and terms of order higher
than the first in ¢ — ¢ with negligible loss of accuracy.
Note that the geometric delay is equal to the “coordinate
time delay”, ¢ — ¢, plus transformation corrections of two
types. The first type is a “time dilation” correction, con-
sisting of three terms proportional to ¢ — ¢. It is easily
demonstrated that these terms are less than 0.5 cm in
magnitude. Consequently, these corrections are of mar-
ginal importance for even the most ambitious VLBI ap-
plications.

The second correction category, which corresponds to
the clock synchronization correction (or aberration correc-
tion) found in a special relativity treatment, can be esti-
mated as follows:

V.-B
— < 10* X 6000 km = 600 m (19)

Since V., changes very little over a day, this term exhibits
essentially diurnal time variations. In time delay calcu-
lations, this large correction must be treated very pre-
cisely.

Up to this point, the coordinate time delay # — ¢ has
been treated in a general fashion and could denote any
two events recorded by relevant solar system observers.
In VLBI applications, the times, ¢ and ¢, denote the
arrival times of a given wavefront at two antennas as
seen by solar system observers. The description of this
wavefront in VLBI applications can be divided into two
formulations: a plane-wave description for sources at
“infinite” distances (e.g., extragalactic sources) and a
spherical wave description for “close” sources (e.g., a
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spacecraft in the solar system). Since this article is pri-
marily concerned with the relativistic time transformation
of a given coordinate time delay from solar system
observers to antenna observers, a general discussion of
delay calculations, including all factors, will not be at-
tempted. However as an cxample, the time delay for an
extragalactic source will be analyzed.

The time delay for an extragalactic source can be
derived by first calculating the delay observed in the
solar system frarhe and then transforming to antenna
observers according to Eq. (18). We will give the signal
a plane-wave representation that ignores transmission
media and general relativity effects. According to solar
system observers, the delay for a plane wave is easily
shown to be given by

S'B
c[1+S- (V. + V.)/cl

¢t == (20)

where S is a unit vector in the direction of the radio
source rclative to the solar system barycenter. The ob-
served time delay is obtained by inserting this expression
into the time transformation, Eq. (18), to obtain

AV: —2A¢, V.V,
- o e Yew]

»

2c* c?

) SB
C[l + S'(V,;“{“V:)/C]

21
Ve(t) - B(t)
c?

All quantities in this expression are evaluated at time ¢
the time the wave front reaches antenna 1.

>

As an alternate approach, the geometric delay can
casily be derived to order v/c on the basis of a geocentric
approximation (Ref. 4). In that derivation, the V.*B
term enters the delay as a result of the aberration cor-
rection to the source direction. As indicated by the two
derivations, this large term can be viewed in two ways.
For Earth-bound observers, it is a geometric correction
applied to the position of the source. For solar system ob-
servers, it is viewed as a time correction representing a
loss of synchronization between Earth-fixed clocks.

The preceding analysis of the geometric delay will
facilitate the discussion of VLBI clock synchronization
that follows in the next section.
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V. Clock Synchronization Techniques

This section will show how two synchronization tech-
niques, portable clocks and VLBI, can be used to syn-
chronize a world-wide clock network according to the
synchronization conventions defined in Section III. The
portable clock technique will be discussed first.

In the present world-wide timekeeping network, a set
of atomic clocks (“the master clock™) at one location is
used to define a reference time. Clocks at other locations
around the world are periodically resynchronized by
comparing them with a portable clock that is carried to
each member clock. Before traveling overseas each time,
the portable clock is synchronized on-site with the master-
clock. In this manner, a world-wide nctwork of clocks is
kept in synchronization at the level allowed by the in-
strumental and transportation stability of the clocks
involved.

Let a portable clock be synchronized with the master
clock at coordinate time, t = t,. Then let the portable
clock follow some path' X,(t) over Earth to some mem-
ber of the clock network. (Note that X, (t) and V,(t)
consist of Earth-spin effects as well as clock transporta-
tion). After the portable clock has reached the member
clock j at time #/, the clock-specific correction for the
portable clock will be

Vi) — V3~
M,,w/ H(0)
f1

)

2 [d’e <Xn> — P (Xm)]

2¢*

dt

V()X () 22)

C_!

where V, and V,, are the geocentric speeds of the port-
able and master clock. (We have not included the other
terms in Eq. (10) in this discussion since they are com-
mon to all clocks and do not affect synchronization). The
integral term in this expression accounts for the fact that
the master clock rate adjustment (passed on to the port-
able clock during synchronization) will not suppress the
Vi — 24. integral for the portable clock once it starts its
journey and changes its geocentric position and speed.

According to the synchronization convention estab-
lished in Section III, the portable clock-member clock
comparison must be handled as follows. The desired
value for the member clock is given by

o Y (t’)c°2X,- (t) )

'Relative to Earth center-of-mass.
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Thus, comparing Eq. (22) and Eq. (23), we see that the
portable clock must be corrected to account for the
speed-potential integral that has accumulated in transit:

AT, = At, — At
. " Vﬁ (t) -V, —2 [4’9 (Xp) T e (an>]
’ 2c?

)

dt  (24)

For one day transit times, this correction can be of the
order of 10-'* X 10° s = 100 ns. Furthermore, the portable
clock rate will differ from the conventional rate for site
j by

Vj — Vi — ¢P<XJ) —
2c*

be(Xin)

so that clock rate comparisons must include this correc-
tion factor. Thus, we see that, during transit, the periodic
term V,+ X, changes into the appropriate value while the
linear term loses its adjustment and must be corrected.

It is interesting to note that the integral contained in
Eq. (24) is essentially the theoretical time gain predicted
by Hafele and Keating for their Earth-circumnavigation
experiment (Ref. 5). In that paper, theoretical calcula-
tions only considered geocentric speed and geopotential
effects. With a more general approach, the present for-
mulation indicates that this integral is the total time
gain, provided one can neglect rate terms less than 107%°,
Thus, the warning in Ref. 5 that effects of the sun and
moon may not be entirely negligible appears to be un-
warranted for present clock stabilities.

Clock synchronization by means of VLBI is conceptu-
ally, if not operationally, straightforward. For a given
natural source, the time delay is measured between two
antennas and appropriately corrected for transmission
media and instrumental delays. The resulting delay should
be equal to the geometric delay calculated according to
Eq. (21). (We assume here that geophysical and astro-
nomical parameters are known with sufficient accuracy.)
Apy difference between the measured delay and the cal-
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culated delay represents the synchronization loss between
antenna clocks. In this manner, a world-wide system of
clocks could be synchronized at interferometer accuracies.

VI. Experimental Tests

In a treatment of this nature, some discussion should
be devoted to the tests of relativity that are suggested
by the reformulation. As indicated in Section III, only
the “effective potential” term will be evident in “Earth-
bound” comparisons of Earth-bound clocks. Contingent
on instrumental feasibility, several Earth-bound experi-
ments might be suggested to test the presence of this
effect. One experiment, involving airborne clocks (Ref. 5),
has already been carried out. As an alternate approach,
an experiment could be designed to take advantage of
the clock synchronization precision of the VLBI tech-
nique. Time synchronization at the 10 ns level is now
feasible with current VLBI instrumentation (Ref. 4). With
this precision, a typical Earth-fixed rate differential of
10% (1 km altitude differential) would be visible in
about three days. However, a test of this type requires
“station-clock” rate stability and calibration at a few
parts in 107'*, Except perhaps at standards labs, this
clock requirement would presently be the most difficult
aspect of the VLBI approach.

VIl. Summary

In the preceding sections, a reformulation of the rela-
tivistic time transformation has simplified interpretation
of the various effects entering the transformation be-
tween coordinate time and Earth-bound proper time
(atomic time). Based on this analysis, the conventions
required for the synchronization of a world-wide clock
network have been investigated. In addition, the new
formulation has simplified a relativistic analysis of the
“geometric” delay measured in VLBI applications. Fi-
nally, a brief discussion has been devoted to possible
“Earth-bound” experimental tests of predictions of the
theory.
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Fig. 1. The position vector of Earth-bound point j as
measured by solar system observers
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